Chapter 17. Additional Aspects of Equilibrium

17.1 The Common Ion Effect

- The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

- For example, consider the ionization of a weak acid, acetic acid.

\[\text{HC}_2\text{H}_3\text{O}_2(aq) \rightleftharpoons \text{H}^+(aq) + \text{C}_2\text{H}_3\text{O}_2^-(aq) \]

- If we add additional C\(_2\)H\(_3\)O\(_2^-\) ions by the addition of a strong electrolyte, (e.g., NaC\(_2\)H\(_3\)O\(_2\)) the equilibrium is shifted to the left.

- This causes a reduction in the [H\(^+\)] and a decrease in the percent ionization of the acetic acid.

- By adding sodium acetate, we have disturbed the acetic acid equilibrium.

- In effect, we have added a product of this equilibrium (i.e., the acetate ion).
 - This phenomenon is called the common-ion effect.
 - The extent of ionization of a weak electrolyte is decreased by adding to the solution a strong electrolyte that has an ion in common with the weak electrolyte.

- Common ion equilibrium problems are solved following the same pattern as other equilibrium problems.

- **However, the initial concentration of the common ion (from the salt) must be considered.**
Sample Exercise 17.1 (p. 720)

What is the pH of a solution made by adding 0.30 mol of acetic acid (HC₂H₃O₂) and 0.30 mol of sodium acetate (NaC₂H₃O₂) to enough water to make 1.0 L of solution?

$$
\text{CH}_3\text{COOH}(aq) \rightleftharpoons \text{H}^+(aq) + \text{CH}_3\text{COO}^-(aq)
$$

<table>
<thead>
<tr>
<th>Initial</th>
<th>0.30 M</th>
<th>0</th>
<th>0.30 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change</td>
<td>−x M</td>
<td>+x M</td>
<td>+x M</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>(0.30 − x) M</td>
<td>x M</td>
<td>(0.30 + x) M</td>
</tr>
</tbody>
</table>

Practice Exercise 17.1

Calculate the pH of a solution containing 0.085 M nitrous acid (HNO₂, $K_a = 4.5 \times 10^{-4}$) and 0.10 M potassium nitrite (KNO₂).

(3.42)
Sample Exercise 17.2 (p. 722)

Calculate the fluoride ion concentration and pH of a solution that is 0.20 M in HF and 0.10 M in HCl.

\[[\text{F}^-] = 1.4 \times 10^{-3} \text{ M}; \quad \text{pH} = 1.00 \]

<table>
<thead>
<tr>
<th></th>
<th>(\text{HF}(aq))</th>
<th>(\text{H}^+(aq))</th>
<th>(\text{F}^-(aq))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.20 M</td>
<td>0.10 M</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>(-x) M</td>
<td>(+x) M</td>
<td>(+x) M</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>((0.20 - x)) M</td>
<td>((0.10 + x)) M</td>
<td>(x) M</td>
</tr>
</tbody>
</table>

Practice Exercise 17.2

Calculate the formate ion concentration and pH of a solution that is 0.050 M in formic acid (HCOOH; \(K_a = 1.8 \times 10^{-4} \)) and 0.10 M in HNO₃.

\[[\text{HCOO}^-] = 9.0 \times 10^{-5} \text{ M}; \quad \text{pH} = 1.00 \]
17.2 Buffered Solutions

A buffered solution or buffer is a solution that resists a drastic change in pH upon addition of small amounts of strong acid or strong base.

Composition and Action of Buffered Solutions

- A buffer consists of a mixture of a weak acid (HX) and its conjugate base (X^-):
 \[HX(aq) \rightleftharpoons H^+(aq) + X^-(aq) \]

- Thus a buffer contains both:
 - An acidic species (to neutralize OH^-)
 - A basic species (to neutralize H^+).

- When a small amount of OH^- is added to the buffer, the OH^- reacts with HX to produce X^- and water.
 - But the [HX]/[X^-] ratio remains more or less constant, so the pH is not significantly changed.

- When a small amount of H^+ is added to the buffer, X^- is consumed to produce HX.
 - Once again, the [HX]/[X^-] ratio is more or less constant, so the pH does not change significantly.

Calculating the pH of a Buffer

- The pH of the buffer is related to \(K_a \) and to the relative concentrations of the acid and base.
- We can derive an equation that shows the relationship between conjugate acid–base concentrations, pH and \(K_a \).
- By definition:
 \[K_a = \frac{[H^+][X^-]}{[HX]} \]

- Rearranging, we get:
 \[[H^+] = K_a \frac{[HX]}{[X^-]} \]

- If we take the negative natural logarithm of each side of the equation we get:
 \[-\log[H^+] = -\log K_a - \log \frac{[HX]}{[X^-]} \]

- By definition:
 \[pH = pK_a - \log \frac{[HX]}{[X^-]} \]

- An alternate form of this equation is:
 \[pH = pK_a + \log \frac{[X^-]}{[HX]} = pK_a + \log \frac{\text{base}}{\text{acid}} \]

- The above equation is the **Henderson-Hasselbalch equation**.
 - Note that this equation uses the equilibrium concentrations of the acid and conjugate base.
Buffer Capacity and pH Range

- **Buffer capacity** is the amount of acid or base that can be neutralized by the buffer before there is a significant change in pH.

- Buffer capacity depends on the concentrations of the components of the buffer.
 - The greater the concentrations of the conjugate acid–base pair, the greater the buffer capacity.

- The **pH range** of a buffer is the pH range over which it is an effective buffer.
 - The pH range of a buffer is generally within one pH unit of the pK_a of the buffering agent.

Sample Exercise 17.3 (p. 725)

What is the pH of a buffer that is 0.12 M in lactic acid (HC₃H₅O₃) and 0.10 M in sodium lactate (Na C₃H₅O₃)? For lactic acid, $K_a = 1.4 \times 10^{-4}$.

\[(3.77)\]

\[
\begin{array}{c|c|c|c}
\text{HC}_3\text{H}_5\text{O}_3(aq) & \rightleftharpoons & \text{H}^+(aq) & + \\
\text{C}_3\text{H}_5\text{O}_3^-(aq) \\
\hline
\text{Initial} & 0.12 \text{ M} & 0 & 0.10 \text{ M} \\
\text{Change} & -x \text{ M} & +x \text{ M} & +x \text{ M} \\
\text{Equilibrium} & (0.12 - x) \text{ M} & x \text{ M} & (0.10 + x) \text{ M} \\
\end{array}
\]

Practice Exercise 17.3

Calculate the pH of a buffer composed of 0.12 M benzoic acid and 0.20 M sodium benzoate. (Refer to Appendix D)

\[(4.42)\]
Sample Exercise 17.4 (p. 726)

How many moles of NH₄Cl must be added to 2.0 L of 0.10 M NH₃ to form a buffer whose pH is 9.00? (Assume that the addition of NH₄Cl does not change the volume of the solution.)

(0.36 mol)

Practice Exercise 17.4

Calculate the concentration of sodium benzoate that must be present in a 0.20 M solution of benzoic acid (HC₇H₅O₂) to produce a pH of 4.00.

(0.13 M)
Addition of Strong Acids or Bases to Buffers

- We break the calculation into two parts.
 - A *stoichiometric* calculation.
 - An *equilibrium* calculation.

Sample Exercise 17.5 (p. 728)

A buffer is made by adding 0.300 mol of HC$_2$H$_3$O$_2$ and 0.300 mol NaC$_2$H$_3$O$_2$ to enough water to make 1.00 L of solution. The pH of the buffer is 4.74 (Sample Exercise 17.1).

a) Calculate the pH of this solution after 0.020 mol of NaOH is added.

\[\text{pH} = 4.80 \]

b) For comparison, calculate the pH that would result if 0.020 mol of NaOH were added to 1.00 L of pure water. (neglect any volume changes).

\[\text{pH} = 12.30 \]

Practice Exercise 17.5

Determine

a) the pH of the original buffer described in Sample Exercise 17.5 after the addition of 0.020 mol HCl, and

\[\text{pH} = 4.68 \]

b) the pH of the solution that would result from the addition of 0.020 mol HCl to 1.00 L of pure water.

\[\text{pH} = 1.70 \]
17.3 Acid-Base Titrations

- The plot of pH versus volume during a titration is called a **pH titration curve**.

Strong Acid-Strong Base Titrations

- Consider adding a strong base (e.g., NaOH) to a solution of a strong acid (e.g., HCl).

- We can divide the titration curve into four regions.

 1. **Initial pH (before any base is added).**
 - The pH is given by the strong acid solution.
 - Therefore, pH < 7.

 2. **Between the initial pH and the equivalence point.**
 - When base is added before the equivalence point the pH is given by the amount of strong acid in excess.
 - Therefore, pH < 7.

 3. **At the equivalence point.**
 - The amount of base added is stoichiometrically equivalent to the amount of acid originally present.
 - The cation of a strong base and the anion of a strong acid do not undergo hydrolysis.
 - Therefore, pH = 7.00.

 4. **After the equivalence point.**
 - The pH is determined by the excess base in the solution.
 - Therefore, pH > 7.

Seven Steps to solving titration problems:

Analyze the problem, then:

1. **Determine # moles of each reactant.**
2. **Determine # moles of all species after reaction.**
3. **Calculate new volume after reaction.**
4. **Determine molarities of all species (combine Steps 2 & 3).**
5. **Equilibrium calculation – RICE table.** *
6. **Equilibrium calculation, substituting results from Step 5 into K_a.** *
7. **$[H^+] \rightarrow pH$. May mean $[OH^-] \rightarrow pOH \rightarrow 14.00 - pOH = pH$.** *

*not required for strong acid-strong base titrations
Sample Exercise 17.6 (p. 731)

Calculate the pH when the following quantities of 0.100 M NaOH solution have been added to 50.0 mL of 0.100 M HCl solution:

a) 49.0 mL (3.00)
b) 51.0 mL (11.00)

<table>
<thead>
<tr>
<th>H⁺(aq)</th>
<th>OH⁻(aq)</th>
<th>H₂O(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before addition</td>
<td>5.00 × 10⁻³ mol</td>
<td>0</td>
</tr>
<tr>
<td>Addition</td>
<td>4.90 × 10⁻³ mol</td>
<td>—</td>
</tr>
<tr>
<td>After addition</td>
<td>0.10 × 10⁻³ mol</td>
<td>0</td>
</tr>
</tbody>
</table>

Practice Exercise 17.6

Calculate the pH when the following quantities of 0.10 M HNO₃ have been added to 25.0 mL of 0.10 M KOH solution:

a) 24.9 mL (10.30)
b) 25.1 mL (3.70)
Weak Acid-Strong Base Titration

Again, we divide the titration into four general regions:

1. Before any base is added:
 - The solution contains only weak acid.
 - Therefore, pH is given by the equilibrium calculation.

2. Between the initial pH and the equivalence point.
 - As strong base is added it consumes a stoichiometric quantity of weak acid:
 \[\text{HC}_2\text{H}_3\text{O}_2(aq) + \text{OH}^-(aq) \rightarrow \text{C}_2\text{H}_3\text{O}_2^-(aq) + \text{H}_2\text{O}(l) \]
 - However, there is an excess of acetic acid.
 - Therefore, we have a mixture of weak acid and its conjugate base.
 - Thus the composition of the mixture is that of a buffer.
 - The pH is given by the buffer calculation.
 - First the amount of \(\text{C}_2\text{H}_3\text{O}_2^- \) generated is calculated, as well as the amount of \(\text{HC}_2\text{H}_3\text{O}_2 \) consumed. (Stoichiometry.)
 - Then the pH is calculated using equilibrium conditions. (Henderson-Hasselbalch equation.)
Sample Exercise 17.7 (p. 735)

Calculate the pH of the solution formed when 45.0 mL of 0.100 M NaOH solution is added to 50.0 mL of 0.100 M \(\text{HC}_2\text{H}_3\text{O}_2 \). \((K_a = 1.8 \times 10^{-5}) \)

\((2.0 \times 10^{-6} \text{ M}) \)

<table>
<thead>
<tr>
<th></th>
<th>CH(_3)COOH(aq)</th>
<th>OH(^-)(aq)</th>
<th>H(_2)O(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before addition</td>
<td>5.00 \times 10^{-3} mol</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Addition</td>
<td></td>
<td>4.50 \times 10^{-3} mol</td>
<td></td>
</tr>
<tr>
<td>After addition</td>
<td>0.50 \times 10^{-3} mol</td>
<td>0</td>
<td>4.50 \times 10^{-3} mol</td>
</tr>
</tbody>
</table>

Practice Exercise 17.7

a) Calculate the pH in the solution formed by adding 10.0 mL of 0.050 M NaOH to 40.0 mL of 0.0250 M benzoic acid \((\text{HC}_7\text{H}_5\text{O}_2, K_a = 6.3 \times 10^{-5}) \). \((4.20) \)

b) Calculate the pH in the solution formed by adding 10.0 mL of 0.100 M HCl to 20.0 mL of 0.100 M \(\text{NH}_3 \). \((9.26) \)
Sample Exercise 17.8 (p. 735)
Calculate the pH at the equivalence point in the titration of 50.0 mL of 0.100 M \(\text{HC}_2\text{H}_3\text{O}_2 \) with 0.100 M NaOH.

(8.72)

Practice Exercise 17.8
Calculate the pH at the equivalence point when
a) 40.0 mL of 0.025 M benzoic acid (\(\text{HC}_7\text{H}_5\text{O}_2 \), \(K_a = 6.3 \times 10^{-5} \)) is titrated with 0.050 M NaOH
(8.21)

b) 40.0 mL of 0.100 M \(\text{NH}_3 \) is titrated with 0.100 HCl
(5.28)
Strong acid/Weak acid Titrations

<table>
<thead>
<tr>
<th>Strong Acid</th>
<th>Weak Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>• pH begins at 7, gradual ↑ as base is added</td>
<td>• Initial pH ↑ is steeper than for strong acid</td>
</tr>
<tr>
<td>• pH ↑ dramatically near equivalence point</td>
<td>• pH levels off (buffer effect)</td>
</tr>
<tr>
<td>• pH equivalence point = 7.00</td>
<td>• pH at equivalence point > 7.00</td>
</tr>
<tr>
<td>• Shape of curve after equivalence point is due to [base]</td>
<td>• Shape of curve after equivalence point is due to [base]</td>
</tr>
</tbody>
</table>

Titrations of Polyprotic Acids

- In polyprotic acids, the ionizable protons dissociate in a series of steps.
 - Therefore, in a titration there are \(n \) equivalence points corresponding to each ionizable proton.

- In the titration of \(\text{H}_3\text{PO}_4 \) with \(\text{NaOH} \) there are three equivalence points:
 - one for the formation of \(\text{H}_2\text{PO}_4^- \),
 - one for the formation of \(\text{HPO}_4^{2-} \), and
 - one for the formation of \(\text{PO}_4^{3-} \).

![Diprotic acid.](image)

Titrination curve for the reaction of 50.0 mL of 0.10 M \(\text{H}_3\text{PO}_3 \) with 0.10 M \(\text{NaOH} \).
17.4 Solubility Equilibria

The Solubility-Product Constant, K_{sp}

K_{sp} is the equilibrium constant for the equilibrium between an ionic solid solute and its saturated aqueous solution = solubility-product constant or the solubility product.

Sample Exercise 17.9 (p. 738)

Write the expression for the solubility-product constant for CaF$_2$, and look up the corresponding K_{sp} value in Appendix D.

Practice Exercise 17.9

Give the solubility-product constant expressions and the values of the solubility-product constants (from Appendix D) for the following compounds:

a) barium carbonate

b) silver sulfate
Solubility and K_{sp}

- **Solubility** = the maximum amount of solute that can be dissolved in a standard volume of solvent.
 - often expressed as grams of solid that will dissolve per liter of solution (g/L).

- **Molar solubility** = the number of moles of solute that dissolve to form a liter of saturated solution.

- We can use the **solubility** to find K_{sp} and vice versa.

 - **To convert solubility to** K_{sp}:
 1. Convert **solubility** → **molar solubility** (via molar mass).
 2. Convert **molar solubility** → **molar concentration of ions at equilibrium** (equilibrium calculation).
 3. Use the equilibrium [ions] in the K_{sp} expression.

 - **To convert** K_{sp} **to solubility**:
 1. Write the K_{sp} expression.
 2. Let x = the **molar solubility** of the salt.
 3. Use the **stoichiometry** of the reaction to express the concentration of each species in terms of x.
 4. Substitute these concentrations into the equilibrium expression and solve for x.
 5. This calculation works best for salts whose ions have low charges.

Sample Exercise 17.10 (p. 739)

Solid silver chromate is added to pure water at 25°C. Some of the solid remains undissolved at the bottom of the flask. The mixture is stirred for several days to ensure that equilibrium is achieved between the undissolved Ag$_2$CrO$_4$(s) and the solution. Analysis of the equilibrated solution shows that its silver ion concentration is 1.3×10^{-4} M. Assuming that Ag$_2$CrO$_4$ dissociates completely in water and that there are no other important equilibria involving the Ag$^+$ or CrO$_4^{2-}$ ions in the solution, calculate K_{sp} for this compound.

(1.1×10^{-12})
Practice Exercise 17.10

A saturated solution of Mg(OH)₂ in contact with undissolved solid is prepared at 25°C. The pH of the solution is found to be 10.17. Assuming that Mg(OH)₂ dissociates completely in water and that there are no other simultaneous equilibria involving the Mg²⁺ or OH⁻ ions in the solution, calculate K_{sp} for this compound.

(1.6×10^{-12})

Sample Exercise 17.11 (p. 740)

The K_{sp} for CaF₂ is 3.9×10^{-11} at 25°C. Assuming that CaF₂ dissociates completely upon dissolving and that there are no other important equilibria affecting its solubility, calculate the solubility of CaF₂ in grams per liter.

$(1.6 \times 10^{-2}$ g CaF₂/L soln)
Practice Exercise 17.11

The K_{sp} for LaF₃ is 2×10^{-19}. What is the solubility of LaF₃ in water in moles per liter?

$(9 \times 10^{-6} \text{ mol/L})$
17.5 Factors That Affect Solubility

- Three factors that have a significant impact on solubility are:
 1. The presence of a common ion.
 2. The pH of the solution.
 3. The presence or absence of complexing agents.

Sample Exercise 17.12 (p. 742)

Calculate the molar solubility of CaF₂ at 25°C in a solution that is
a) 0.010 M Ca(NO₃)₂ (3.1 x 10⁻⁵ mol CaF₂/L 0.010 M Ca(NO₃)₂)
b) 0.010 M in NaF (3.9 x 10⁻⁷ mol CaF₂/L 0.010 M NaF)

<table>
<thead>
<tr>
<th></th>
<th>CaF₂(s)</th>
<th>Ca²⁺(aq)</th>
<th>F⁻(aq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>—</td>
<td>0.010 M</td>
<td>0</td>
</tr>
<tr>
<td>Change</td>
<td>−x M</td>
<td>+x M</td>
<td>+2x M</td>
</tr>
<tr>
<td>Equilibrium</td>
<td>(0.010 + x) M</td>
<td>2x M</td>
<td></td>
</tr>
</tbody>
</table>
Practice Exercise 17.12

The value for K_{sp} for manganese (II) hydroxide, Mn(OH)_2, is 1.6×10^{-13}. Calculate the molar solubility of Mn(OH)_2 in a solution that contains 0.020 M NaOH.

$(4.0 \times 10^{-10} \text{ M})$
Sample Exercise 17.13 (p. 745)

Which of the following substances will be more soluble in acidic solution than in basic solution:

a) Ni(OH)$_2$(s)
b) CaCO$_3$(s)
c) BaF$_2$(s)
d) AgCl(s)

(a-c)
Practice Exercise 17.13

Write the net ionic equation for the reaction of the following copper (II) compounds with acid:

- a) CuS
- b) Cu(N₃)₂
3. Formation of Complex Ions

- Metal ions may act as Lewis acids in aqueous solution (water may act as the Lewis base). → may have a significant impact on metal salt solubility.

- Consider the formation of Ag(NH₃)₂⁺: \(\text{Ag}^+(aq) + 2\text{NH}_3(aq) \rightleftharpoons \text{Ag(NH}_3\text{)}_2^+(aq) \)
 - \(\text{Ag(NH}_3\text{)}_2^+ \) is called a complex ion.
 - \text{NH}_3 (the attached Lewis base) = a ligand.
 - equilibrium constant = the formation constant, \(K_f \):
 \[
 K_f = \frac{[\text{Ag(NH}_3\text{)}_2^+]}{[\text{Ag}^+][\text{NH}_3]^2} = 1.7 \times 10^7
 \]

<table>
<thead>
<tr>
<th>Complex Ion</th>
<th>(K_f)</th>
<th>Equilibrium Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ag(NH}_3\text{)}_2^+)</td>
<td>(1.7 \times 10^7)</td>
<td>(\text{Ag}^+(aq) + 2\text{NH}_3(aq) \rightleftharpoons \text{Ag(NH}_3\text{)}_2^+(aq))</td>
</tr>
<tr>
<td>(\text{Ag(CN)}_2^-)</td>
<td>(1 \times 10^{21})</td>
<td>(\text{Ag}^+(aq) + 2\text{CN}^-(aq) \rightleftharpoons \text{Ag(CN)}_2^-(aq))</td>
</tr>
<tr>
<td>(\text{Ag(S}_2\text{O}_3\text{)}_2^{3-})</td>
<td>(2.9 \times 10^{13})</td>
<td>(\text{Ag}^+(aq) + 2\text{S}_2\text{O}_3^{2-}(aq) \rightleftharpoons \text{Ag(S}_2\text{O}_3\text{)}_2^{3-}(aq))</td>
</tr>
<tr>
<td>(\text{CdBr}_2^-)</td>
<td>(5 \times 10^3)</td>
<td>(\text{Cd}^{2+}(aq) + 4\text{Br}^-(aq) \rightleftharpoons \text{CdBr}_2^-\text{(aq)})</td>
</tr>
<tr>
<td>(\text{Cr(OH)}_4^-)</td>
<td>(8 \times 10^{20})</td>
<td>(\text{Cr}^{3+}(aq) + 4\text{OH}^-(aq) \rightleftharpoons \text{Cr(OH)}_4^-\text{(aq)})</td>
</tr>
<tr>
<td>(\text{Co(SCN)}_4^{2-})</td>
<td>(1 \times 10^3)</td>
<td>(\text{Co}^{2+}(aq) + 4\text{SCN}^-(aq) \rightleftharpoons \text{Co(SCN)}_4^{2-}(aq))</td>
</tr>
<tr>
<td>(\text{Cu(NH}_3\text{)}_4^{2+})</td>
<td>(5 \times 10^{12})</td>
<td>(\text{Cu}^{2+}(aq) + 4\text{NH}_3(aq) \rightleftharpoons \text{Cu(NH}_3\text{)}_4^{2+}(aq))</td>
</tr>
<tr>
<td>(\text{Cu(CN)}_4^{2-})</td>
<td>(1 \times 10^{25})</td>
<td>(\text{Cu}^{2+}(aq) + 4\text{CN}^-(aq) \rightleftharpoons \text{Cu(CN)}_4^{2-}(aq))</td>
</tr>
<tr>
<td>(\text{Ni(NH}_3\text{)}_6^{2+})</td>
<td>(1.2 \times 10^9)</td>
<td>(\text{Ni}^{2+}(aq) + 6\text{NH}_3(aq) \rightleftharpoons \text{Ni(NH}_3\text{)}_6^{2+}(aq))</td>
</tr>
<tr>
<td>(\text{Fe(CN)}_6^{3-})</td>
<td>(1 \times 10^{35})</td>
<td>(\text{Fe}^{2+}(aq) + 6\text{CN}^-(aq) \rightleftharpoons \text{Fe(CN)}_6^{3-}(aq))</td>
</tr>
<tr>
<td>(\text{Fe(CN)}_6^{3-})</td>
<td>(1 \times 10^{42})</td>
<td>(\text{Fe}^{3+}(aq) + 6\text{CN}^-(aq) \rightleftharpoons \text{Fe(CN)}_6^{3-}(aq))</td>
</tr>
</tbody>
</table>

Common ions that form complexes: \(\text{NH}_3, \text{CN}^-, \text{OH}^-, \text{SCN}^-, \) halogens

Clue in Reactions Question = an excess of concentrated … is added to …

Chapters 5 and 13 The Ultimate Equations Handbook
Sample Exercise 17.14 (p. 748)

Calculate the concentration of Ag^+ present in solution at equilibrium when concentrated ammonia is added to a 0.010 M solution of AgNO_3 to give an equilibrium concentration of $[\text{NH}_3] = 0.20 \text{ M}$. Neglect the small volume change that occurs when NH$_3$ is added.

($[\text{Ag}^+] = 1.5 \times 10^{-8} \text{ M}$)

<table>
<thead>
<tr>
<th></th>
<th>$\text{Ag(NH}_3)_2^{2+}$ (aq)</th>
<th>Ag^+ (aq)</th>
<th>$+2 \text{NH}_3(aq)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>0.010 M</td>
<td>0 M</td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>$-x \text{ M}$</td>
<td>$+x \text{ M}$</td>
<td></td>
</tr>
<tr>
<td>Equilibrium</td>
<td>$0.010 - x \text{ M}$</td>
<td>$x \text{ M}$</td>
<td>0.20 M</td>
</tr>
</tbody>
</table>

Practice Exercise 17.14

Calculate $[\text{Cr}^{3+}]$ in equilibrium with Cr(OH)_4^- when 0.010 mol of $\text{Cr(NO}_3)_3$ is dissolved in a liter of solution buffered at pH 10.0.

($[\text{Cr}^{3+}] = 1 \times 10^{-16} \text{ M}$)
Amphotericism
- Substances that are capable of acting either as an acid or a base are **amphoteric**.
 - The term is similar to one discussed earlier: *amphiprotic*, which relates more generally to any species that can either gain or lose a proton.
- Amphoteric metal hydroxides and oxides will dissolve in either a strong acid or a strong base.
 - e.g.: hydroxides and oxides of Al^{3+}, Cr^{3+}, Zn^{2+}, and Sn^{2+}.
 - The hydroxides generally form complex ions with several hydroxide ligands attached to the metal:
 \[
 \text{Al(OH)}_3(s) + \text{OH}^-(aq) \rightleftharpoons \text{Al(OH)}_4(aq)
 \]
- Hydrated metal ions act as weak acids.
 - As strong base is added, protons are removed:
 \[
 \text{Al(H}_2\text{O)}_6^{3+}(aq) + \text{OH}^-(aq) \rightleftharpoons \text{Al(H}_2\text{O)}_5\text{(OH)}^{2+}(aq) + \text{H}_2\text{O}(l)
 \]
 \[
 \text{Al(H}_2\text{O)}_5\text{(OH)}^{2+}(aq) + \text{OH}^-(aq) \rightleftharpoons \text{Al(H}_2\text{O)}_4\text{(OH)}^+(aq) + \text{H}_2\text{O}(l)
 \]
 \[
 \text{Al(H}_2\text{O)}_4\text{(OH)}^+(aq) + \text{OH}^-(aq) \rightleftharpoons \text{Al(H}_2\text{O)}_3\text{(OH)}(s) + \text{H}_2\text{O}(l)
 \]
 \[
 \text{Al(H}_2\text{O)}_3\text{(OH)}(s) + \text{OH}^-(aq) \rightleftharpoons \text{Al(H}_2\text{O)}_2\text{(OH)}_3(aq) + \text{H}_2\text{O}(l)
 \]
- Addition of an acid reverses these reactions

17.6 Precipitation and Separation of Ions
- If $Q > K_{sp}$, precipitation occurs until $Q = K_{sp}$.
- If $Q = K_{sp}$ equilibrium exists (saturated solution).
- If $Q < K_{sp}$, solid dissolves until $Q = K_{sp}$.
Sample Exercise 17.15 (p.751)

Will a precipitate form when 0.10 L of 8.0×10^{-3} M Pb(NO$_3$)$_2$ is added to 0.40 L of 5.0×10^{-3} M Na$_2$SO$_4$? (yes)

Practice Exercise 17.15

Will a precipitate form when 0.050 L of 2.0×10^{-2} M NaF is mixed with 0.010 L of 1.0×10^{-2} M Ca(NO$_3$)$_2$? (yes)

Selective Precipitation of Ions

- Ions can be separated from each other based on the solubilities of their salts.
Sample Exercise 17.16 (p. 751)

A solution contains 1.0×10^{-2} M Ag$^+$ and 2.0×10^{-2} M Pb$^{2+}$. When Cl$^-$ is added to the solution, both AgCl ($K_{sp} = 1.8 \times 10^{-10}$) and PbCl$_2$ ($K_{sp} = 1.7 \times 10^{-5}$) precipitate from the solution.

What concentration of Cl$^-$ is necessary to begin the precipitation of each salt?

Which salt precipitates first?

($> 2.9 \times 10^{-2}$ M for PbCl$_2$; $> 1.8 \times 10^{-8}$ M for AgCl, precipitates first)

Practice Exercise 17.16

A solution consists of 0.050 M Mg$^{2+}$ and 0.020 M Cu$^{2+}$.

Which ion will precipitate first as OH$^-$ is added to the solution?

What concentration of OH$^-$ is necessary to begin the precipitation of each cation?

($K_{sp} = 1.8 \times 10^{-11}$ for Mg(OH)$_2$ and $K_{sp} = 4.8 \times 10^{-20}$ for Cu(OH)$_2$)

(Cu(OH)$_2$ precipitates first, when [OH$^-] > 1.5 \times 10^{-9}$ M; Mg(OH)$_2$ precipitates when [OH$^-] > 1.9 \times 10^{-5}$ M)
17.7 Qualitative Analysis for Metallic Elements

- **Quantitative analysis** is designed to determine how much metal ion is present.
- **Qualitative analysis** is designed to detect the presence of metal ions.
 - Typical qualitative analysis of a metal ion mixture involves:
 1. Separation of ions into five major groups on the basis of their differential solubilities.
 - Insoluble chlorides.
 - Acid-insoluble sulfides.
 - Base-insoluble sulfides and hydroxides.
 - Insoluble phosphates.
 - Alkali metals and ammonium ion.
 2. Individual ions within each group are separated by selectively dissolving members of the group.
 3. Specific tests are used to determine whether a particular ion is present or absent.
Sample Integrative Exercise 17 (p. 755)

A sample of 1.25 L of HCl gas at 21°C and 0.950 atm is bubbled through 0.500 L of 0.150 M NH₃ solution. Calculate the pH of the resulting solution, assuming that all of the HCl dissolves and that the volume of the solution remains 0.500 L.

(pH = 8.97)